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Abstract. We review moment-generating functions to provide a context
for understanding the utility of Gaussian functions and the Gaussian
integral. We then explain Gaussian functions as a class of exponential
function and demonstrate a common technique for integrating a Gaussian
function over (−∞,∞) by converting to polar coordinates, Finally, we
use a moment-generating function and the Gaussian integral to construct
the parameterized form of the Gaussian or normal probability density
function.

1. Characterizing Probability Distributions

Although we could start by presenting a Gaussian function and proceed
by evaluating its integral over the real numbers, that would not provide a
context for the exercise. The relevance of the procedure would be lost and
the reader would be left with an isolated mathematical process devoid of
applicability. Given that the root of Gaussian functions lies in probability
theory, where a specific instance defines the so-called normal distribution,
we will review the necessary statistical principles to understand the utility
of the Gaussian integral.

1.1. Moments. In probability theory, a parameter associated with a proba-
bility distribution, such as its mean or variance, is said to be a characteristic
of the distribution. A probability distribution is a function that models a so-
called population of data points. A population is the hypothetical collection
of all possible measurements made under a given set of conditions. It is a
theoretical set of data and not the actual set of measurements. To distinguish
the characteristics of a sample from the parameters of a distribution, we use
the term statistic. Therefore, the population mean is a parameter of the
probability distribution and the sample mean is a statistic of the sample set.

To illustrate the difference between a parameter and a statistic, let’s com-
pare the formula for the expected value of a discrete random variable 𝑋 with
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probability mass function 𝑃(𝑥),

𝐸 (𝑋) = `𝑋 =

𝑁∑︁
𝑛=1

𝑥𝑛𝑃(𝑥𝑛), (1)

to the formula for the expected value of a continuous random variable 𝑋

with probability density function 𝑃(𝑥),

𝐸 (𝑋) = `𝑋 =

∫ ∞

−∞
𝑥𝑃(𝑥) d𝑥. (2)

Equation 1 represents a statistic and may have different values for different
sample sets. Equation 2 represents a parameter and has a fixed value. Each
is a characteristic of its respective discrete and continuous distribution.

A moment is an element of a set of characteristic values that collectively
describe the distribution of a random variable, albeit not in a unique manner.
Under the right conditions, two random variables with identical moments
will have identical probability distributions. That makes it possible to ap-
proximate the probability distribution of a random variable using moments.

In the study of statistics, moments fall into two classes: raw and central. A
raw moment is computed about the origin and a central moment is computed
about the mean. Without proof, we state that if 𝑋 is a discrete random
variable with probability mass function 𝑃(𝑥) and 𝑔(𝑋) is a function of 𝑋 ,
then

𝐸 (𝑔(𝑋)) = `𝑔(𝑋) =
𝑁∑︁
𝑛=1

𝑔(𝑥𝑛) · 𝑃(𝑥𝑛); (3)

and if 𝑋 is a continuous random variable with probability density function
𝑃(𝑥) and 𝑔(𝑋) is a function of 𝑋 , then

𝐸 (𝑔(𝑋)) = `𝑔(𝑋) =

∫ ∞

−∞
𝑔(𝑥) · 𝑃(𝑥) d𝑥. (4)

We set 𝑔(𝑋) = 𝑋 𝑘 to find the raw moments of a probability distribution.
The raw moments of a discrete probability distribution are defined as

𝐸 (𝑋 𝑘 ) = `′𝑘 =
𝑁∑︁
𝑛=1

𝑥𝑘𝑛𝑃(𝑥𝑛), (5)

where 𝐸 (𝑋 𝑘 ) is the 𝑘 th moment of discrete random variable 𝑋 and written
as `′

𝑘
. Similarly, the raw moments of a continuous probability distribution

for a continuous random variable 𝑋 are defined as

𝐸 (𝑋 𝑘 ) = `′𝑘 =

∫ ∞

−∞
𝑥𝑘𝑃(𝑥) d𝑥. (6)
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The central moments are defined analogously, setting 𝑔(𝑋) = (𝑋 − `)𝑘
to center the moments about the mean `. The central moments of a discrete
random variable are

𝐸 ( [𝑋 − `]𝑘 ) = `𝑘 =

𝑁∑︁
𝑛=1

(𝑥𝑛 − `)𝑘𝑃(𝑥𝑛) (7)

and for a continuous random variable they are

𝐸 ( [𝑋 − `]𝑘 ) = `𝑘 =

∫ ∞

−∞
(𝑥 − `)𝑘𝑃(𝑥) d𝑥. (8)

Note that the first raw moment, `′1, is equal to the mean, `. The first central
moment, `1, will always equal zero because Equation 8 reduces to `− ` = 0
for 𝑘 = 1. The area under the curve to the left of the mean will always
be equal to that to the right for a proper probability density function. The
second central moment, `2, is equal to the population variance. Knowing
that the population variance, 𝜎2, of random variable 𝑋 is 𝐸 (𝑋2) − 𝐸2(𝑋),
the variance can be expressed in terms of raw moments as

𝜎2 = `′2 − `′21 . (9)

In addition, it is possible to define a set of moments about an arbitrary point,
𝑎, in which case you would replace ` in Equations 7 and 8 with the point 𝑎.

1.2. Moment-Generating Functions. Instead of calculating the moments
of a probability distribution on an ad hoc basis, we can identify a func-
tion from which the moments can be immediately derived. This so-called
moment-generating function exploits the series expansion of e𝑡𝑥 to create
a function that, when successively differentiated at zero, produces the raw
moment of a probability distribution corresponding to the level of differenti-
ation. For example, the first derivative at zero produces the first raw moment,
the second derivative the second raw moment, and so on. This works by
applying Equation 4 to find the expected value of e𝑡𝑋 , using 𝑔(𝑋) = e𝑡𝑋 and
integrating to yield a moment-generating function,

𝑀 (𝑡) = 𝐸 (e𝑡𝑋) =
∫ ∞

−∞
e𝑡𝑥𝑃(𝑥) d𝑥. (10)
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Expanding e𝑡𝑥 to its infinite series gives us

𝑀 (𝑡) =
∫ ∞

−∞

( ∞∑︁
𝑛=0

𝑡𝑛𝑥𝑛

𝑛!

)
𝑃(𝑥) d𝑥;

=

∫ ∞

−∞
(1 + 𝑡𝑥 + 𝑡2𝑥2

2!
+ 𝑡3𝑥3

3!
+ · · · )𝑃(𝑥) d𝑥;

=

∫ ∞

−∞
𝑃(𝑥) d𝑥 + 𝑡

∫ ∞

−∞
𝑥𝑃(𝑥) d𝑥 + 𝑡2

2!

∫ ∞

−∞
𝑥2𝑃(𝑥) d𝑥 + · · · ;

= 1 + 𝑡`′1 +
𝑡2

2!
`′2 +

𝑡3

3!
`′3 + · · · . (11)

We arrive at Equation 11 by substituting terms using Equation 6.
If we differentiate 𝑀 (𝑡) with respect to 𝑡 we get

𝑀′(𝑡) = d𝑀
d𝑡

= `′1 +
2𝑡
2!
`′2 +

3𝑡2

3!
`′3 + · · · .

Evaluating 𝑀′(𝑡) at 𝑡 = 0 eliminates all but the first term, yielding

𝑀′(0) = d𝑀
d𝑡

����
𝑡=0

= `′1.

Taking the second derivative produces

𝑀′′(𝑡) = d2𝑀

d𝑡2
=

2
2!
`′2 +

6𝑡
3!
`′3 +

12𝑡2

4!
+ · · · ;

and evaluating it at 𝑡 = 0 results in

𝑀′′(0) = d2𝑀

d𝑡2

�����
𝑡=0

= `′2.

It should be apparent that the 𝑘 th derivative evaluated at 𝑡 = 0 produces the
𝑘 th raw moment according to

d𝑘

d𝑡𝑘
𝑀 (𝑡)

�����
𝑡=0

= `′𝑘 where 𝑘 > 0. (12)

As with Equation 4, if 𝑋 is a continuous random variable with probability
density function 𝑃(𝑥) and 𝑔(𝑋) is a function of 𝑋 , then

𝑀 (𝑡) = 𝐸 (e𝑡𝑔(𝑋)) =
∫ ∞

−∞
e𝑡𝑔(𝑥)𝑃(𝑥) d𝑥. (13)

We can use this formulation to find the moment-generating function of 𝑋−`

by setting 𝑔(𝑋) = 𝑋 − `. This can be useful to derive the variance directly
from the second moment instead of using Equation 9. However, we will
only be using raw moments.



5

1.3. Uniform Distribution Moments. So that we can understand how to
derive the moment-generating function of the Gaussian distribution in Sec-
tion 4, we will now work through the example of deriving the moment-
generating function of the uniform probability distribution,

𝑃(𝑥) =
{

1
𝑏−𝑎 for 𝑎 ≤ 𝑥 ≤ 𝑏,

0 for 𝑥 < 𝑎 or 𝑥 > 𝑏.
(14)

Applying Equation 10 to the unifrom probability density function from
Equation 14, we have

𝑀 (𝑡) =
∫ ∞

−∞
e𝑡𝑥

1
𝑏 − 𝑎

d𝑥 =
1

𝑏 − 𝑎

∫ 𝑏

𝑎

e𝑡𝑥 d𝑥.

Integrating gives us

𝑀 (𝑡) = 1
𝑏 − 𝑎

· e𝑡𝑥

𝑡

����𝑏
𝑎

=
1

𝑏 − 𝑎

(
e𝑏𝑡 − e𝑎𝑡

𝑡

)
,

which produces the indeterminate form 0
0 at 𝑡 = 0, requiring us to apply

l’Hôpital’s rule as follows:

lim
𝑡→0

1
𝑏 − 𝑎

(
e𝑏𝑡 − e𝑎𝑡

𝑡

)
= lim

𝑡→0

𝑏e𝑏𝑡 − 𝑎e𝑎𝑡

𝑏 − 𝑎
=
𝑏 − 𝑎

𝑏 − 𝑎
= 1.

This gives us the complete moment-generating function for the uniform
probability distribution,

𝑀 (𝑡) =
{

e𝑏𝑡−e𝑎𝑡
(𝑏−𝑎)𝑡 for 𝑡 ≠ 0,

1 for 𝑡 = 0.
(15)

We can now find the first raw moment of the uniform probability distribu-
tion by finding the first derivative with respect to 𝑡 of its moment-generating
function. Using the sum and product rules, we get

𝑀′(𝑡) = d
d𝑡

𝑀 (𝑡) = 1
𝑏 − 𝑎

(
d
d𝑡

e𝑏𝑡

𝑡
− d

d𝑡
e𝑎𝑡

𝑡

)
;

=
1

𝑏 − 𝑎

(
𝑏e𝑏𝑡

𝑡
− e𝑏𝑡

𝑡2
− 𝑎e𝑎𝑡

𝑡
+ e𝑎𝑡

𝑡2

)
;

=
1

𝑏 − 𝑎

(
𝑏e𝑏𝑡 − 𝑎e𝑎𝑡

𝑡
+ e𝑎𝑡 − e𝑏𝑡

𝑡2

)
.

The resulting function is indeterminate at 𝑡 = 0, requiring us to rewrite it
to produce a result of the form 0

0 , allowing us to apply l’Hôpital’s rule as
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follows:

d
d𝑡

𝑀 (𝑡)
����
𝑡=0

= lim
𝑡→0

1
𝑏 − 𝑎

(
𝑏𝑡e𝑏𝑡 − 𝑎𝑡e𝑎𝑡 + e𝑎𝑡 − e𝑏𝑡

𝑡2

)
;

=
1

𝑏 − 𝑎
lim
𝑡→0

𝑏2𝑡e𝑏𝑡 + 𝑏e𝑏𝑡 − 𝑎2𝑡e𝑎𝑡 − 𝑎e𝑎𝑡 + 𝑎e𝑎𝑡 − 𝑏e𝑏𝑡

2𝑡
;

=
1

𝑏 − 𝑎
lim
𝑡→0

𝑏2𝑡e𝑏𝑡 − 𝑎2𝑡e𝑎𝑡

2𝑡
;

=
1

𝑏 − 𝑎
lim
𝑡→0

𝑏2e𝑏𝑡 − 𝑎2e𝑎𝑡

2
;

=
1

𝑏 − 𝑎
· 𝑏

2 − 𝑎2

2
=
𝑏 + 𝑎

2
.

Swapping the terms from the last result, the first raw moment of the uniform
probability distribution is

𝑀′(0) = `′1 =
𝑎 + 𝑏

2
. (16)

We can verify the first raw moment is correct by using Equation 2 to find
the mean,

` =

∫ ∞

−∞
𝑥 · 1

𝑏 − 𝑎
d𝑥;

=
1

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑥 d𝑥;

=
1

𝑏 − 𝑎
· 𝑥

2

2

����𝑏
𝑎

;

=
1

𝑏 − 𝑎
· 𝑏

2 − 𝑎2

2
=
𝑎 + 𝑏

2
.

As a final exercise, let’s derive the second raw moment of the uniform
probability distribution. Differentiating the first derivative from before, we
find the second derivative is

𝑀′′(𝑡) = 1
𝑏 − 𝑎

(
𝑏2e𝑏𝑡 − 𝑎2e𝑎𝑡

𝑡
− 𝑏e𝑏𝑡 − 𝑎e𝑎𝑡

𝑡2
+ 𝑎e𝑎𝑡 − 𝑏e𝑏𝑡

𝑡2
− 2

(
e𝑎𝑡 − e𝑏𝑡

𝑡3

))
.

Again, we have a function that cannot be readily evaluated at 𝑡 = 0. As
before, we restructure it to allow the application of l’Hôpital’s rule, giving
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us

d2

d𝑡2
𝑀 (𝑡)

�����
𝑡=0

=
1

𝑏 − 𝑎
lim
𝑡→0

(
𝑡2(𝑏2e𝑏𝑡 − 𝑎2e𝑎𝑡)

𝑡3
− 𝑡 (𝑏e𝑏𝑡 − 𝑎e𝑎𝑡)

𝑡3

+ 𝑡 (𝑎e𝑎𝑡 − 𝑏e𝑏𝑡)
𝑡3

− 2(e𝑎𝑡 − e𝑏𝑡)
𝑡3

)
;

=
1

𝑏 − 𝑎
lim
𝑡→0

𝑡2(𝑏2e𝑏𝑡 − 𝑎2e𝑎𝑡) + 2𝑡 (𝑎e𝑎𝑡 − 𝑏e𝑏𝑡) + 2(e𝑏𝑡 − e𝑎𝑡)
𝑡3

;

=
1

𝑏 − 𝑎
lim
𝑡→0

(
𝑡2(𝑏3e𝑏𝑡 − 𝑎3e𝑎𝑡)

3𝑡2

+ 2𝑡 (𝑏2e𝑏𝑡 − 𝑎2e𝑎𝑡) + 2𝑡 (𝑎2e𝑎𝑡 − 𝑏2e𝑏𝑡)
3𝑡2

+2(𝑎e𝑎𝑡 − 𝑏e𝑏𝑡) + 2(𝑏e𝑏𝑡 − 𝑎e𝑎𝑡)
3𝑡2

)
;

=
1

𝑏 − 𝑎
lim
𝑡→0

(𝑏3e𝑏𝑡 − 𝑎3e𝑎𝑡)
3

;

=
𝑏3 − 𝑎3

3(𝑏 − 𝑎) =
𝑎2 + 𝑎𝑏 + 𝑏2

3
.

Using Equation 9, we can formulate the variance of the uniform proba-
bility distribution as

𝜎2 =
𝑎2 + 𝑎𝑏 + 𝑏2

3
−

(
𝑎 + 𝑏

2

)2
;

=
4𝑎2 + 4𝑎𝑏 + 4𝑏2 − 3𝑎2 − 6𝑎𝑏 − 3𝑏2

12
;

=
𝑎2 − 2𝑎𝑏 + 𝑏2

12
=
𝑏2 − 2𝑎𝑏 + 𝑎2

12
;

=
(𝑏 − 𝑎)2

12
. (17)

2. Gaussian Functions

Mathematics literature uses the term Gaussian function either narrowly—
using it exclusively to refer to the Gaussian probability density function—or
broadly—using it to refer to a class of exponential functions. We will use
the term in its broad sense, starting with the simplest instance, 𝑓 (𝑥) = e−𝑥2 ,
before examining more complex forms. Unfortunately, the author has failed
to ascertain the historical origin of Gaussian functions and how their earliest
applications eventually led to the identification of the Gaussian probability
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density function. Therefore, we will present a pedagogical analysis of
how starting from 𝑓 (𝑥) = e−𝑥2 eventually leads to the Gaussian probability
density function.

Generally speaking, a Gaussian function is a function whose natural
logarithm is a concave quadratic function. A quadratic function is concave
if its second derivative is negative. In essence, it is a downward-growing
parabola as in Figure 1. Therefore, we can define a Gaussian function as

−1 1 2

−1

0

1

x

𝑓 (𝑥) = −𝑥2 + 𝑥 + 1

Figure 1. A concave quadratic function.

having the form 𝑓 (𝑥) = 𝑎e−𝑏𝑥2+𝑐𝑥+𝑑 , where 𝑏 is positive in order to ensure
the second derivative of the quadratic function is negative. To simplify
our discussion, we restrict our scrutiny to quadratic functions of the form
−𝑎(𝑥 − 𝑏)2, giving 𝑓 (𝑥) = 𝑎e−𝑏(𝑥−𝑐)2 as our model Gaussian function. The
simplest Gaussian function we can construct sets 𝑎 = 1, 𝑏 = 1, and 𝑐 = 0,
leaving us with 𝑓 (𝑥) = e−𝑥2 . We plot this function in Figure 2 and show
how it varies by changing the function parameters.

Starting with 𝑓 (𝑥) = e−𝑥2 , we can visually note it is an even function,
meaning that 𝑓 (𝑥) = 𝑓 (−𝑥). This property means the function is symmetric
about the 𝑦-axis. More generally, all Gaussian functions are symmetric about
their midpoints, with the area under the curve to the left of the midpoint
being equal to the area under the curve to the right of the midpoint. We will
exploit this property in Section 3 to compute half of the Gaussian integral.

The midpoint of the function can be shifted by changing the value of 𝑐,
as done in the plot of 𝑓 (𝑥) = e−(𝑥−2)2 in Figure 2. Notice that the midpoint
is shifted by an amount equal to 𝑐, shifting in the positive 𝑥 direction when
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e−𝑥2
e−(𝑥−2)2

e−𝑥2/4

e−𝑥2+1

2e−𝑥2

−4 −2 0 2 4
0

0.5

1

1.5

2

2.5

x

𝑓
(𝑥
)

Figure 2. The Gaussian function, 𝑓 (𝑥) = e−𝑥2 , can be
stretched, widened or narrowed, and shifted by changing 𝑎,
𝑏, and 𝑐 in 𝑓 (𝑥) = 𝑎e−𝑏(𝑥−𝑐)2 .

𝑐 is positive and in the negative 𝑥 direction when 𝑐 is negative. Changing
the value of 𝑏 expands or contracts the width of the curve. A value greater
than one narrows the curve and a value less than one and greater than zero
widens the curve, as in the plot of 𝑓 (𝑥) = e−𝑥2/4. Notice how the base of
the curve expands by an amount equal to 1

𝑏
. The function can be stretched

upward or downward by multiplying it by a constant, as in the plot of
𝑓 (𝑥) = 2e−𝑥2 where we see that the maximum of the function changes by
a factor of 𝑎. The same effect can be achieved by adding a constant 𝑘 to
the quadratic term, as in the plot of 𝑓 (𝑥) = e−𝑥2+1, where 𝑘 = 1. But that
is equivalent to multiplication by e𝑘 , which is one reason we chose not to
use a general quadratic form for the exponent (another is that it simplifies
integration by substitution as we will see in Section 4). It should be clear
that e · e−𝑥2

= e−𝑥2+1 and 2e−𝑥2
= eln 2 · e−𝑥2

= e−𝑥2+ln 2, making an additive
term redundant when parameterizing the function and studying the effects
of changing parameter values. In Section 4, we will see that parameters 𝑎,
𝑏, and 𝑐 posses special meanings with respect to the Gaussian probability
distribution.
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3. The Gaussian Integral

Recognizing that 𝑓 (𝑥) = e−𝑥2 ranges in value from 0 to 1, suppose we
wanted to use a Gaussian function as a probability density function. Our
first step would be to ensure that the integral over (−∞,∞) is equal to 1.
We would have to integrate the function to determine the area, 𝐴, under
the curve. If 𝐴 ≠ 1, we would normalize the function to 1

𝐴
𝑓 (𝑥) so that

its integral over (−∞,∞) equaled 1. We will, in fact, do all of this while
deriving the Gaussian probability density function. However, embarking on
this journey requires evaluating the Gaussian integral, for which we must
first take a brief detour.

Solving problems in mathematics often requires what could be called
tricks; like when we restructured the derivatives in Section 1.3 so we could
apply l’Hôpital’s rule. The Gaussian integral can be solved in various ways,
all of which require some trickery. We will be using two tricks, the first
of which is based on the seemingly trivial identity 𝑥 =

√
𝑥2, allowing us to

observe that ∫ 𝑏

𝑎

𝑓 ′(𝑥) d𝑥 =

(∫ 𝑏

𝑎

𝑓 ′(𝑥) d𝑥 ·
∫ 𝑏

𝑎

𝑓 ′(𝑥) d𝑥
) 1

2

(18)

implies

𝑓 (𝑏) − 𝑓 (𝑎) =
√︃
( 𝑓 (𝑏) − 𝑓 (𝑎))2. (19)

The second trick we will use is to convert from Cartesian to polar coordinates,
for which the reader will have to refer to a calculus textbook if the process
is unclear.

We wish to evaluate the improper integral∫ ∞

−∞
e−𝑥

2
d𝑥

to see if the integrand can be adapted for use as a probability density function.
We cannot evaluate the integral based on an existing indefinite integral
because the integrand has no elementary indefinite integral. To evaluate the
improper integral will depend exactly on its improper nature, integrating
from negative to positive infinity. First, we apply Equation 18 to rewrite the
integral as ∫ ∞

−∞
e−𝑥

2
d𝑥 =

(∫ ∞

−∞
e−𝑥

2
d𝑥 ·

∫ ∞

−∞
e−𝑥

2
d𝑥

) 1
2

.
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Next, we replace one of the 𝑥 dummy variables with another dummy variable,
𝑦, allowing us to rewrite the integral as the following double integral:(∫ ∞

−∞
e−𝑥

2
d𝑥 ·

∫ ∞

−∞
e−𝑥

2
d𝑥

) 1
2

=

(∫ ∞

−∞
e−𝑥

2
d𝑥 ·

∫ ∞

−∞
e−𝑦

2
d𝑦

) 1
2

;

=

(∫ ∞

−∞

∫ ∞

−∞
e−(𝑥

2+𝑦2) d𝑥 d𝑦
) 1

2

.

For clarity, we’ll set aside the square root until the end and evaluate the
double integral by converting to polar coordinates as follows:∫ ∞

−∞

∫ ∞

−∞
e−(𝑥

2+𝑦2) d𝑥 d𝑦 =

∫ 2𝜋

0

∫ ∞

0
e−𝑟

2
d𝑟 d\;

=

∫ 2𝜋

0
−1

2
e−𝑟

2
����∞
0

d\;

=

∫ 2𝜋

0

1
2

d\;

=
1
2
\

����2𝜋
0

;

= 𝜋.

Now we can apply the square root to arrive at our final result,∫ ∞

−∞
e−𝑥

2
d𝑥 =

√
𝜋. (20)

The various transformations we performed were possible because 𝑓 (𝑥) =
e−𝑥2 is a continuous function. As noted in Section 2, 𝑓 (𝑥) = 𝑓 (−𝑥) holds
true for a Gaussian function. That allows us to infer that∫ ∞

0
e−𝑥

2
d𝑥 =

√
𝜋

2
. (21)

More formally, if 𝑓 (𝑥) is continuous on the interval (−∞,∞) containing
point 𝑎 then ∫ ∞

−∞
𝑓 (𝑥) d𝑥 =

∫ 𝑎

−∞
𝑓 (𝑥) d𝑥 +

∫ ∞

𝑎

𝑓 (𝑥) d𝑥.

This property of improper integrals allows us to write∫ ∞

−∞
e−𝑥

2
d𝑥 =

∫ 0

−∞
e−𝑥

2
d𝑥 +

∫ ∞

0
e−𝑥

2
d𝑥.
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Observing that 𝑓 (𝑥) = 𝑓 (−𝑥) gives us∫ 0

−∞
e−𝑥

2
d𝑥 =

∫ ∞

0
e−𝑥

2
d𝑥;∫ ∞

−∞
e−𝑥

2
d𝑥 = 2

∫ ∞

0
e−𝑥

2
d𝑥;∫ ∞

0
e−𝑥

2
d𝑥 =

1
2

∫ ∞

−∞
e−𝑥

2
d𝑥;∫ ∞

0
e−𝑥

2
d𝑥 =

√
𝜋

2
.

4. The Gaussian Probability Density Function

Having evaluated the most basic Gaussian integral as
√
𝜋, we can start

to build a probability density function derived from the simplest Gaussian
function, 𝑓 (𝑥) = e−𝑥2 , normalizing it to 𝑓 (𝑥) = 1√

𝜋
e−𝑥2 so that its integral

over (−∞,∞) evaluates to 1. To investigate whether this is a useful con-
struction, we can derive its moment-generating function and first two raw
moments. Using Equation 10, we have

𝑀 (𝑡) = 1
√
𝜋

∫ ∞

−∞
e𝑡𝑥e−𝑥

2
d𝑥;

=
1
√
𝜋

∫ ∞

−∞
e−(𝑥

2−𝑡𝑥) d𝑥;

=
1
√
𝜋

∫ ∞

−∞
e−(𝑥

2−𝑡𝑥) d𝑥 · e−𝑡2/4

e−𝑡2/4
;

=
e𝑡2/4
√
𝜋

∫ ∞

−∞
e−(𝑥

2−𝑡𝑥+𝑡2/4) d𝑥;

=
e𝑡2/4
√
𝜋

∫ ∞

−∞
e−(𝑥−𝑡/2)2

d𝑥.

Using 𝑢 = 𝑥 − 𝑡
2 and d𝑢 = 1 · d𝑥, we find

𝑀 (𝑡) = e𝑡2/4
√
𝜋

∫ ∞

−∞
e−𝑢

2
d𝑢;

=
e𝑡2/4
√
𝜋

·
√
𝜋;

= e𝑡
2/4.

Note that we used Equation 20 to evaluate
∫ ∞
−∞ e−(𝑥−𝑡/2)2 d𝑥 via substitution.
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We now use Equation 12 to find the first two raw moments. The first raw
moment is

d
d𝑡

𝑀 (𝑡)
����
𝑡=0

= `′1 = lim
𝑡→0

d
d𝑡

e𝑡
2/4 = lim

𝑡→0

𝑡

2
e𝑡

2/4 = 0.

A mean of 0 is exactly what we would expect for a probability density
function centered about the origin. The second raw moment is

d2

d𝑡2
𝑀 (𝑡)

�����
𝑡=0

= `′2 = lim
𝑡→0

d2

d𝑡2
e𝑡

2/4 = lim
𝑡→0

(
1
2

e𝑡
2/4 + 𝑡2

4
e𝑡

2/4
)
=

1
2
,

giving us a variance of

𝜎2 = `′2 − `′21 =
1
2
− 0 =

1
2

after using Equation 9.
The values of the raw moments we found are constants that don’t really

help us toward formulating a general Gaussian probability density function.
But they do give us clues about how such a function might be formulated. In
Section 2, we saw how the center of a Gaussian function could be shifted by
changing the value of the parameter 𝑐 in 𝑓 (𝑥) = 𝑎e−𝑏(𝑥−𝑐)2 . We now have
a clue that 𝑐 is the mean of the distribution because it lies at the midpoint
about which the function has symmetric areas. The parameter 𝑏 may be
related in some way to the variance, given how it affects the width of the
curve. The parameter 𝑎 must be a normalizing constant. To test our theory,
we can hold these parameters constant, with 𝑏 being positive, and try to find
a moment-generating function parameterized in terms of 𝑎, 𝑏, and 𝑐.

We already know that 𝑐 does not affect the area under the curve. Therefore
we will ignore it and evaluate the integral of 𝑓 (𝑥) = 𝑎e−𝑏𝑥2 over (−∞,∞)
to find a value of 𝑎 dependent on 𝑏 that normalizes the function. That will
enable us to find a moment-generating function for the function including 𝑐

using substitution as we did earlier. Using our earlier work, we can readily
evaluate the integral as follows:∫ ∞

−∞
𝑎e−𝑏𝑥

2
d𝑥 = 𝑎

∫ ∞

−∞

e−𝑢2

√
𝑏

d𝑢

where 𝑢 =
√
𝑏𝑥 and d𝑢 =

√
𝑏 d𝑥. Substituting Equation 20, we get

𝑎
√
𝑏

∫ ∞

−∞
e−𝑢

2
d𝑢 =

𝑎
√
𝑏
·
√
𝜋 = 𝑎

√︂
𝜋

𝑏
.
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Solving for 𝑎 in

𝑎

√︂
𝜋

𝑏
= 1

to normalize the function leaves us with

𝑎 =

√︂
𝑏

𝜋
. (22)

Now we can use 𝑓 (𝑥) =

√︃
𝑏
𝜋

e−𝑏(𝑥−𝑐)2 as a probability density function
and find its moment-generating function. Starting with

𝑀 (𝑡) =
∫ ∞

−∞
e𝑡𝑥 ·

√︂
𝑏

𝜋
e−𝑏(𝑥−𝑐)

2
d𝑥;

=

√︂
𝑏

𝜋

∫ ∞

−∞
e𝑡𝑥e−𝑏(𝑥−𝑐)

2
d𝑥;

=

√︂
𝑏

𝜋

∫ ∞

−∞
e−(𝑏𝑥

2−(2𝑏𝑐+𝑡)𝑥+𝑏𝑐2) d𝑥;

=

√︂
𝑏

𝜋

∫ ∞

−∞
e−(𝑏𝑥

2−(2𝑏𝑐+𝑡)𝑥+𝑏𝑐2) d𝑥 · e−(𝑐𝑡+𝑡2/4𝑏)

e−(𝑐𝑡+𝑡2/4𝑏)
;

= e𝑐𝑡+𝑡
2/4𝑏

√︂
𝑏

𝜋

∫ ∞

−∞
e−(𝑏𝑥

2−(2𝑏𝑐+𝑡)𝑥+𝑏𝑐2+𝑐𝑡+𝑡2/4𝑏) d𝑥;

= e𝑐𝑡+𝑡
2/4𝑏

√︂
𝑏

𝜋

∫ ∞

−∞
e
−
(
𝑏𝑥2−(2𝑏𝑐+𝑡)𝑥+

(
𝑏𝑐+𝑡/2√

𝑏

)2
)

d𝑥;

= e𝑐𝑡+𝑡
2/4𝑏

√︂
𝑏

𝜋

∫ ∞

−∞
e−

(√
𝑏𝑥−

(
𝑏𝑐+𝑡/2√

𝑏

))2

d𝑥;

we can substitute 𝑢 =
√
𝑏𝑥 −

(
𝑏𝑐+𝑡/2√

𝑏

)
and d𝑢 =

√
𝑏 d𝑥 to get

𝑀 (𝑡) = e𝑐𝑡+𝑡
2/4𝑏

√︂
𝑏

𝜋

∫ ∞

−∞

e−𝑢2

√
𝑏

d𝑢;

= e𝑐𝑡+𝑡
2/4𝑏

√︂
𝑏

𝜋
·
√︂

𝜋

𝑏
= e𝑐𝑡+𝑡

2/4𝑏 .
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The first moment is
d
d𝑡

𝑀 (𝑡)
����
𝑡=0

= ` = lim
𝑡→0

d
d𝑡

e𝑐𝑡+𝑡
2/4𝑏;

= lim
𝑡→0

(
(𝑐 + 𝑡

2𝑏
) · e𝑐𝑡+𝑡

2/4𝑏
)

;

= 𝑐.

As we suspected, 𝑐 is equal to the mean, `. The second moment is

d2

d𝑡2
𝑀 (𝑡)

�����
𝑡=0

= lim
𝑡→0

d2

d𝑡2
e𝑐𝑡+𝑡

2/4𝑏;

= lim
𝑡→0

d
d𝑡

(
(𝑐 + 𝑡

2𝑏
) · e𝑐𝑡+𝑡

2/4𝑏
)

;

= lim
𝑡→0

d
d𝑡

(𝑐e𝑐𝑡+𝑡
2/4𝑏) + lim

𝑡→0

d
d𝑡

( 𝑡

2𝑏
e𝑐𝑡+𝑡

2/4𝑏
)

;

= lim
𝑡→0

(
𝑐(𝑐 + 𝑡

2𝑏
) · e𝑐𝑡+𝑡

2/4𝑏
)
+ lim

𝑡→0

(
e𝑐𝑡+𝑡2/4𝑏

2𝑏
+

( 𝑡

2𝑏
(𝑐 + 𝑡

2𝑏
) · e𝑐𝑡+𝑡

2/4𝑏
))

;

= 𝑐2 + 1
2𝑏

.

We can now find the variance using Equation 9 as

𝜎2 = `′2 − `2 = `′2 − 𝑐2;

= 𝑐2 + 1
2𝑏

− 𝑐2;

=
1

2𝑏
.

Solving for 𝑏 in terms of 𝜎 produces

𝑏 =
1

2𝜎2 .

Substituting this value into Equation 22 gives us

𝑎 =
1

𝜎
√

2𝜋
.

Replacing 𝑎, 𝑏, and 𝑐 in 𝑓 (𝑥) = 𝑎e−𝑏(𝑥−𝑐)2 with their parameterized values
produces the probability density function for what is known as the Gaussian
or normal distribution,

𝑓 (𝑥) = 1
𝜎
√

2𝜋
e−

(𝑥−`)2
2𝜎2 . (23)
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Notice how Equation 23 is dependent on the mean, `, and the standard
deviation, 𝜎. As mentioned previously, changing ` just moves the center of
the distribution left or right. But 𝜎 controls both the width and the height
of the distribution. When the distribution widens, it gets shorter. When
the distribution narrows, it gets taller. The role of 𝜎 is to constrain the area
under the curve to remain constant independent of the value of 𝜎. Therefore,
the Gaussian probability density function represents a family of functions
of unit area.

When ` = 0 and 𝜎 = 1, the distribution corresponding to the probability
density function is called the standard normal distribution,

𝑓 (𝑥) = 1
√

2𝜋
e−

𝑥2
2 . (24)

The standard normal distribution’s probability density function is used pri-
marily as a reference function for numerically integrating probabilities that
can be scaled to calculate probabilities for other normal distributions based
on the value of 𝜎. The probability within 𝑛 standard deviations of the mean
is the same for all normal distributions regardless of the value of 𝜎. There-
fore, calculating probabilities for the standard normal distribution allows
you to determine them for any normal distribution as long as you express
your ranges in relative terms of standard deviations from the mean instead
of using absolute numbers.

5. Commentary

The Gaussian probability density function is usually presented as a for-
mula to be used, but not ncessarily understood. Although we attempted to
show a step-by-step process from which one can get from 𝑓 (𝑥) = e−𝑥2 to
Equation 23, we did not explain the origin of 𝑓 (𝑥) = e−𝑥2 . Also, we cheated
and chose −𝑏(𝑥 − 𝑐)2 as an exponent instead of −𝑏𝑥2 + 𝑐𝑥 + 𝑑 with little
explanation. At this point, it should be apparent that we needed the exponent
to be in the form of a square paralleling −𝑥2 so that we could integrate by
substitution.

Ultimately, our goal was to show that the Gaussian probability density
function did not sprout out of thin air fully formed. Instead, it evolved
from a series of observations about the family of functions derived from
𝑓 (𝑥) = e−𝑥2 . The Gaussian integral formed the core of our exercise because
we only needed to evaluate it once and were subsequently able to use it
multiple times via substitution, demonstrating its utility.

The Gaussian probability distribution occurs frequently in many contexts
as a result of the central limit theorem.
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The Central Limit Theorem. Given a random sample 𝑋1, 𝑋2, . . . , 𝑋𝑁 of
independent and identically distributed random variables from a distribution
with finite mean ` and finite variance 𝜎2, let

𝐷𝑁 =

∑𝑁
𝑛=1 𝑋𝑛 − 𝑁`

𝜎
√
𝑁

=

√
𝑁

𝜎
( �̄� − `) where �̄� =

1
𝑁

𝑁∑︁
𝑛=1

𝑋𝑛.

Then

lim
𝑁→∞

𝑃(𝐷𝑁 ≤ 𝑑) =
∫ 𝑑

−∞

1
√

2𝜋
e−

𝑥2
2 d𝑥 for all d.

In other words, the distribution function 𝐷𝑁 converges to the standard
normal distribution from Equation 24 as 𝑁 → ∞.

For large 𝑁—usually greater than 30—one can pretend that �̄� is dis-
tributed according to the normal distribution when calculating probabilities
such as 𝑃(𝑎 ≤ �̄� ≤ 𝑏). This should not be done recklessly, but does work in
many situations. We will not prove the central limit theorem, but familiarity
with it goes a long way to understanding why it is so common for textbooks
to assume a Gaussian distribution in various contexts.

As a final comment, we explored Gaussian functions and the Gaussian
probability distribution function in one dimension. The functions can can
be extended to multiple dimensions, where analysis becomes considerably
more complicated than what we have explored.

6. Addendum

For completeness, we have decided to demonstrate how to evaluate the
integral of 𝑓 (𝑥) = 𝑎e−𝑏𝑥2+𝑐𝑥+𝑑 over the real numbers and summarize the
integrals we covered in this paper for easy reference.

6.1. General Gaussian Integral. After evaluating the integral of the expo-
nential function of a general concave quadratic function, it should be possible
to evaluate the integral of any Gaussian function by simple parameter sub-
stitution. As before, the integral will depend on already having arrived at
the result of Equation 20 and completing the square to allow integration by
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substitution as follows:∫ ∞

−∞
𝑎e−𝑏𝑥

2+𝑐𝑥+𝑑 d𝑥 = 𝑎

∫ ∞

−∞
e−(𝑏𝑥

2−𝑐𝑥−𝑑) d𝑥;

= 𝑎

∫ ∞

−∞
e−(𝑏𝑥

2−𝑐𝑥−𝑑) d𝑥 · e𝑐2/4𝑏

e𝑐2/4𝑏
;

= 𝑎

∫ ∞

−∞
e−(𝑏𝑥

2−𝑐𝑥+𝑐2/4𝑏) d𝑥 · e
𝑐2
4𝑏+𝑑;

= 𝑎e
𝑐2
4𝑏+𝑑

∫ ∞

−∞
e−(

√
𝑏𝑥− 𝑐

2
√
𝑏
)2

d𝑥;

substituting 𝑢 =
√
𝑏𝑥 − 𝑐

2
√
𝑏

and d𝑢 =
√
𝑏 d𝑥 to get

= 𝑎e
𝑐2
4𝑏+𝑑

∫ ∞

−∞

e−𝑢2

√
𝑏

d𝑢;

= 𝑎

√︂
𝜋

𝑏
e

𝑐2
4𝑏+𝑑 .

6.2. Summary of Gaussian Integrals. We now summarize the results of
evaluating the Gaussian integrals in this paper:∫ ∞

−∞
e−𝑥

2
d𝑥 =

√
𝜋;∫ ∞

0
e−𝑥

2
d𝑥 =

√
𝜋

2
;∫ ∞

−∞
𝑎e−𝑏𝑥

2
d𝑥 = 𝑎

√︂
𝜋

𝑏
;∫ ∞

−∞
𝑎e−𝑏(𝑥−𝑐)

2
d𝑥 = 𝑎

√︂
𝜋

𝑏
;∫ ∞

−∞
𝑎e−

(𝑥−`)2
2𝜎2 d𝑥 = 𝑎𝜎

√
2𝜋;

and ∫ ∞

−∞
𝑎e−𝑏𝑥

2+𝑐𝑥+𝑑 d𝑥 = 𝑎

√︂
𝜋

𝑏
e

𝑐2
4𝑏+𝑑 .

All you really need is the final identity, from which all the others can be
derived by substituting the appropriate values for the equation’s parameters.
Note, however, that we needed to evaluate the first integral in order to
evaluate all of the others.


